
High Flexibility Designs of Quantized Runtime
Reconfigurable Multi-precision Multipliers

Yuhao Liu , Shubham Rai , Salim Ullah , Akash Kumar
Chair of Processor Design, Center for Advancing Electronics Dresden (CfAED), TU Dresden, Germany

Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI Dresden/Leipzig), Germany
Email: {yuhao.liu1, shubham.rai, salim.ullah, akash.kumar}@tu-dresden.de

Abstract—Recent research widely explored the quantization
schemes on hardware. However, for recent accelerators only
supporting 8 bits quantization, such as Google TPU, the lower-
precision inputs, such as 1/2-bit quantized neural network models in
FINN, need to extend the data width to meet the hardware interface
requirements. This conversion influences communication and
computing efficiency. To improve the flexibility and throughput of
quantized multipliers, our work explores two novel reconfigurable
multiplier designs that can repartition the number of input
channels in runtime based on input precision and reconfigure
the signed/unsigned multiplication modes. In this manuscript,
we explored two novel runtime reconfigurable multi-precision
multipliers based on the multiplier-tree and bit-serial multiplier
architectures. We evaluated our designs by implementing a
systolic array and single-layer neural network accelerator on
the Ultra96 FPGA platform. The result shows the flexibility of our
implementation and the high speedup for low-precision quantized
multiplication working with a fixed data width of the hardware
interface.

Index Terms—Multiplier, Multi-precision, Runtime Reconfigura-
tion, Quantization

I. INTRODUCTION

Continuously extending demands for large-scale computing
in recent state-of-the-art research and applications requires high-
performance acceleration hardware platforms. For instance, in
the research of neural network accelerators, the rapidly growing
size of network models causes a huge hardware resource
consumption in model storage, transmission, and inference
computing. This trend prompted related researchers to explore
various optimization subjects, such as quantization: one widely
applied solution that can highly decrease the memory and
computing resource consumption on accelerator design. To
satisfy the requests on the inference of different network
models, the industry community published various generic neural
network accelerator products supporting quantization computing,
for example, the Google TPU on Google Cloud [2]. However,
these designs only support the quantization of network models
to 8 bits. As opposed to the design strategy in the industry
community, the other previous works have deeply explored
the low-precision quantization (<8 bits), such as FINN [11],
which can highly compress the parameter storage and reduce
the resource consumption compared with 8-bit quantization with
accuracy loss. This accuracy loss can be improved by selecting
hyperparameters and retraining. Therefore, for instance, when
researchers want to accelerate 2-bit quantized network models
trained for FINN on the Google TPU hardware, as shown
in Figure 1, the 2-bit input data need to extend the bit-width by
filling placeholder bits (blue) to 8 bits. As a result, eight 2-bit
inputs become eight 8-bit inputs. This conversion influences
inference efficiency and costs more hardware resources to
implement. Furthermore, because low-precision quantization
causes an accuracy loss, previous works, such as FILM-
QNN [9] and MP-OPU [13], explored the mixed low-precision
quantization to trade off the inference accuracy and resource
consumption by setting different precision for layers in the

A 0 1 1 0 1 1 0 0

B 1 0 0 0 0 1 1 1

A3 0 0 0 0 0 0 0 1

B3 1 1 1 1 1 1 1 0

A2 1 1 1 1 1 1 1 0

B2 0 0 0 0 0 0 0 0

A1 1 1 1 1 1 1 1 1

B1 0 0 0 0 0 0 0 1

A0 0 0 0 0 0 0 0 0

B0 1 1 1 1 1 1 1 1

Fig. 1: Quad Channel 2-bit Signed Inputs (left) and Their
Extended 8-bit Format with Placeholder for Recent Hardware
(right)

network. However, as shown in Table III, our experiment shows
that the regular fixed-precision multiplier, such as Vivado IP,
is not a good platform to achieve speedup for mixed-precision
models based on its low precision in different layers because all
data need to be unified to the data width of highest precision.

Therefore, aiming to improve the flexibility of applying differ-
ent precision and increase the throughput in network inference
on hardware, we explored two designs of quantized Runtime
Reconfigurable Multi-precision Multipliers. The key features
and contributions of this work are:

• This paper explored two multi-precision multiplier architec-
ture, Multiplier-Tree and Bitshifter architectures, extended
from Partial Product Array Multiplier and BISMO Matrix
Multiplier separately.

• Our multiplier designs can reconfigure the number of input
channels with a fixed input width in runtime. For example,
assuming one instance of our work is designed as a 32
bits multiplier. The implementation can be configured as a
1/2/4/8/16/32 channels 32/16/8/4/2/1-bit multiplier.

• Our designs also support the runtime reconfiguration of
switching between signed and unsigned multiplication
modes.

II. BACKGROUND

A. Partial Product Array Multiplier

Equation 1 shows the principle of an unsigned Partial Product
Array Multiplier. For two inputs, A and B, assuming the value of
bit i in A and B is ai and bi, these inputs can be represented as
the binarized format: ⟨an−1 · · · a1a0⟩bin and ⟨bn−1 · · · b1b0⟩bin.
Because the n-bit multiplication in array multiplier has n partial
products, the partial products Pi (0 ⩽ i < n, i ∈ Z) can be
computed with A and bi as Pi = (A× bi) × 2i. The final
output C of multiplication is the accumulation result of all
partial products, C =

∑n−1
i=0 Pi. Therefore, for Partial Product

Array Multiplier, if the input precision is n bits, the multiplier
needs to compute n times partial products and add all these
2n-bit results together as output.

A×B = ⟨an−1an−2an−3an−4 · · · a1a0⟩bin
× ⟨bn−1bn−2bn−3bn−4 · · · b1b0⟩bin

=A× (2n−1bn−1 + 2n−2bn−2 + ...+ 21b1 + 20b0)

=A×
n−1∑
i=0

2ibi =

n−1∑
i=0

[(A× bi) ≪ i]

(1)

https://orcid.org/0000-0002-7281-2126
https://orcid.org/0000-0002-6522-5628
https://orcid.org/0000-0002-9774-9522
https://orcid.org/0000-0001-7125-1737

Single Channel Unsigned 4 bits Multiplication Dual Channel Unsigned 2 bits Multiplication

�3 �2 �1 �0 �3 �2 �1 �0

× �3 �2 �1 �0 × �3 �2 �1 �0

�� 0 0 0 0 �03 �02 �01 �00 ��
0 0 0 0 �03 �02 �01 �00

�� 0 0 �13 �12 �11 �10 0 0 �� 0 0 0 0 0 0 0 0

�� 0 0 �23 �22 �21 �20 0 0 �� 0 0 0 0 0 0 0 0

�� �33 �32 �31 �30 0 0 �� �33 �32 �31 �30 0 0 0 0

�7 �6 �5 �4 �3 �2 �1 �0 �13 �12 �11 �10 �03 �02 �01 �00

Fig. 2: From Single Channel 4bits Unsigned Multiplier to Dual
Channel 2bits Unsigned Channel in Previous Works

B. BISMO Matrix Multiplier
BISMO [10] implemented a novel design of a Bit-Serial

Matrix Multiplication Overlay, which convert the dot matrix
multiplication as the bitwise-shifting and AND operations. This
work is evaluated on FPGA and replaced all DSPs resources
as LUTs in matrix calculation implementation. Equation 2
describes the principle of this design: For instance, assuming
two input matrices, A and B, as two 2 × 2 2-bit matrices,
both of these matrices can be converted as the sum of two
1-bit sub-matrices, 21A1 + 20A0 and 21B1 + 20B0. Therefore,
the dot matrix multiplication of A · B can be represented as∑n−1

i=0

∑n−1
j=0 [(Ai ·Bj) ≪ (i+j)]. Because Ai and Bj are 1-bit

matrices, the result of Ai · Bj can be computed with bitwise
operators. If we replace the 1-bit matrices Ai and Bj as the 1-bit
value ai and bj , the BISMO can be converted from the matrix
multiplication overlay to an unsigned integer multiplication.

A =
[
a0 a1
a2 a3

]
=

[
⟨a00a01⟩bin ⟨a10a11⟩bin
⟨a20a21⟩bin ⟨a30a31⟩bin

]
B =

[
b0 b1
b2 b3

]
=

[
⟨b00b01⟩bin ⟨b10b11⟩bin
⟨b20b21⟩bin ⟨b30b31⟩bin

]

⇒

A = 21

[
a00 a10
a20 a30

]
+ 20

[
a01 a11
a21 a31

]
B = 21

[
b00 b10
b20 b30

]
+ 20

[
b01 b11
b21 b31

]
⇒

{
A = 21 ·A1 + 20 ·A0

B = 21 ·B1 + 20 ·B0

⇒ A ·B =A1 ·B1 × 22 + (A1 ·B0 +A0 ·B1)× 21

+A0 ·B0 × 20

⇒ A ·B =

1∑
i=0

1∑
j=0

[(Ai ·Bj) ≪ (i+ j)]

(2)

C. Previous Multi-precision Multiplier Designs
Various previous works explored different designs of multi-

channel multipliers: Shun et al. [8] promised a Radix-4 Booth
multiplier-based multi-channel multiplier. Pfänder et al. [6]
serialized the design in [8] to reduce hardware resource
consumption. PIR-DSP [7] achieves a reconfigurable multi-
precision architecture for multiplier by applying the DSP block
design on FPGA. Neda et al. [5] and Guo et al. [1] explored the
implementations of the approximate multi-precision multiplier
with different methods to generate the partial products. The
works mentioned above are developed based on a similar
principle: We assume two 2N -bit inputs for unsigned mul-
tiplication, for instance, the 4-bit inputs shown in Figure 2. We
can divide these two inputs into four N -bit data, and one 2N -bit
multiplication can be converted to four N -bit multiplications.
The outputs of four N -bit multiplications are the four partial
products P0−3. If we ignore the partial products, P1 and P2, the
single channel 2N -bit multiplication can be a dual channel N -
bit multiplication. Compared with the above-mentioned works,
our Multiplier-Tree architecture also applies the partial product
method to achieve the reconfiguration and additionally supports

the reconfiguration between signed/unsigned multiplication
modes. Moreover, our Bitshifter architecture applies a different
mathematics theory to create the runtime reconfigurable multi-
channel multiplier by bitwise AND and shifting operations.

III. IMPLEMENTATION

A. Computing Patterns
Because the key features of our R2M2 design support the

runtime reconfiguration of i) multi-precision multi-channel
multiplication restructure from 1- to N -bit; ii) switching between
signed and unsigned modes; iii) applying different precision
of two inputs, the implementations in this work support four
different computing patterns:

1) 1 × 1 bit Multiplication: Because in Binarized Neural
Network (BNN), the −1 is represented as ‘0’ and 1 is
represented as ‘1’, the binarized multiplication is the
bitwise XNOR operation.

2) 1 ×N and N ×N bits Unsigned Multiplication: Imple-
menting a regular unsigned multiplier can support this
computation.

3) N ×N bits Signed Multiplication: Implementing a regular
signed multiplier can support this computation.

4) 1×N bits Signed Multiplication: Because binarized data
represents the −1 as ‘0’, the result of ‘0’×A is not 0, but
−A.

Furthermore, to simplify the processing, if the precision n of
one input is 2m−1 < n < 2m, these inputs need to be extended
to 2m bits with placeholders. If the precision n0 and n1 of
two inputs are different, both inputs need to be unified to the
same precision, the higher one. And the input with the higher
original precision should be placed as the second input for our
multipliers.

B. Multiplier-Tree Architecture
In subsection II-C, previous work [8, 6, 7, 5, 1] explored

how to build a 2N -bit multiplier with four N -bit multipliers
to support the runtime reconfiguration between 2N - and N -
bit. Therefore, if we design a reconfigurable 2-bit multiplier
as the basic unit, any 2n-bit multi-precision multipliers can be
created as a nested structure. However, to achieve the runtime
reconfiguration between signed and unsigned multiplication, we
need to extend the methods applied in previous works. As shown
in Equation 3, suppose we compute a 4-bit signed multiplication:

A×B = ⟨a3a2a1a0⟩bin × ⟨b3b2b1b0⟩bin
=(−23a3 + 22a2 + 21a1 + 20a0)×
(−23b3 + 22b2 + 21b1 + 20b0)

=
[

(-21a3+20a2) × (-21b3+20b2)
]
≪ 4+[

(-21a3+20a2) × (21b1 + 20b0)
]
≪ 2+[

(-21b3+20b2) × (21a1 + 20a0)
]
≪ 2+[

(23a1 + 22a0)× (23b1 + 22b0)
]
≪ 0

(3)

The two 4-bit signed inputs, A and B, can be broken down
into two 2-bit signed sub-inputs (bold parts) and two 2-bit
unsigned inputs. Therefore, one ‘signed 2-bit × signed 2-bit’
multiplier, two ‘signed 2-bit × unsigned 2-bit’ multipliers,
and one ‘unsigned 2-bit × unsigned 2-bit’ multiplier can
build a signed 4-bit signed multiplier. If we implement the
basic 2-bit multipliers, supporting the runtime reconfiguration
of ‘signed × signed’, ‘signed × unsigned’, and ‘unsigned ×
unsigned’ multiplications, the 4-bit multiplier built based on
it can support the runtime reconfiguration of signed/unsigned
modes: When four 2-bit multipliers work in unsigned mode, this

Bitwise
AND
Array

Partial
Products

Mask
Array

2-bits Bitwise
Left Shifting

4-bits Bitwise
Left Shifting

8-bits Bitwise
Left Shifting

2-bit multiplier
output

4-bit multiplier
output

8-bit multiplier
output

Fig. 3: Hardware Structure of 8-bit Bitshifter Multiplier

4-bit multiplier is an unsigned reconfigurable multi-precision
multiplier. Else, when all four 2-bit multipliers are reconfigured
as Equation 3, this 4-bit multiplier works in the signed mode.
Therefore, based on the same principle, we can extend this 4-bit
multiplier to 8 bits. However, we also need the reconfigurable
4-bit multiplier to support ‘signed × unsigned’ multiplications.

A×B = ⟨a3a2a1a0⟩bin × ⟨b3b2b1b0⟩bin
=(−23a3 + 22a2 + 21a1 + 20a0)×
(23b3 + 22b2 + 21b1 + 20b0)

=
[

(-21a3+20a2) × (21b3 + 20b2)
]
≪ 4+[

(-21a3+20a2) × (21b1 + 20b0)
]
≪ 2+[

(21a1 + 20a0)× (21b3 + 20b2)
]
≪ 2+[

(23a1 + 22a0)× (23b1 + 22b0)
]
≪ 0

(4)

As shown inEquation 4: one 4-bit ‘signed × unsigned’
multiplier can be broken down to two ‘signed 2-bit × unsigned
2-bit’ multipliers and two ‘unsigned 2-bit × unsigned 2-bit’
multipliers. Furthermore, Equation 5 shows how to apply two 1-
bit × signed 2-bit multipliers and one offset, 22b1, to achieve
one 1-bit × signed 4-bit multipliers.

±1×B =± 1× ⟨b3b2b1b0⟩bin
=± 1× (−23b3 + 22b2 + 21b1 + 20b0)

=
[
±1× (-21b3+20b2)

]
≪ 2+[

±1× (-21b1+20b0)
]
≪ 0± 22b1

(5)

Therefore, based on a basic 2-bit multiplication unit, support-
ing the runtime reconfiguration of ‘signed × signed’, ‘signed
× unsigned’, ‘unsigned × unsigned’, ‘1-bit × signed’, and ‘1-
bit × 1-bit’ multiplications modes, we can create any 2n-bit
reconfigurable multipliers with a nesting structure. These 2-bit
multiplier modules are built with five constant arrays by Verilog
to look up the corresponding output based on the inputs.

C. Bitshifter Design
subsection II-B introduced the principle of BISMO [10] and

pointed out that it can be extended to design a regular multiplier.
Therefore, based on BISMO, assuming two input matric have
only one element, the unsigned multiplication can be converted
as Equation 6:

A×B =< an−1an−2...a1a0 >bin × < bn−1bn−2...b1b0 >bin

=(2n−1an−1 + 2n−2an−2 + ...+ 21a1 + 20a0)×
(2n−1bn−1 + 2n−2bn−2 + ...+ 21b1 + 20b0)

=[(an−1bn−1) << (2n− 2)]

+[(an−1bn−2 + an−2bn−1) << (2n− 3)]

+...

+[(a1b0 + a0b1) << 1]

+[(a0b0) << 0]

(6)

For two n-bit inputs A ⟨an−1...a1a0⟩ and B ⟨bn−1...b1b0⟩,
the product can be computed with the sum of 2n − 1 partial
products, Pi, (0 < i < 2n− 1). And Pi consists of sub partial
products ajbk as Pi =

∑
(ajbk) ≪ i, (j + k = i, 0 < j, k <

n). The values of partial products Pi need to apply a i-bit

4 Channels 2 bits Multiplication Partial Products

Pi+j ���� | (� = 0 → 7, � = 0 → 7)
left

bitshift
P0 �0�0 0
P1 �1�0 �0�1 1
P2 �0�2 �1�1 �2�0 2
P3 �3�0 �2�1 �1�2 �0�3 3
P4 �4�0 �3�1 �2�2 �1�3 �4�0 0
P5 �5�0 �4�1 �3�2 �2�3 �1�4 �0�5 1
P6 �6�0 �5�1 �4�2 �3�3 �2�4 �1�5 �0�6 2
P7 �7�0 �6�1 �5�2 �4�3 �3�4 �2�5 �1�6 �0�7 3
P8 �7�1 �6�2 �5�3 �4�4 �3�5 �2�6 �1�7 0
P9 �7�2 �6�3 �5�4 �4�5 �3�6 �2�7 1
P10 �7�3 �6�4 �5�5 �4�6 �3�7 2
P11 �7�4 �6�5 �5�6 �4�7 3
P12 �7�5 �6�6 �5�7 0
P13 �7�6 �6�7 1
P14 �7�7 2

2 Channels 4 bits Multiplication Partial Products

Pi+j ���� | (� = 0 → 7, � = 0 → 7)
left

bitshift
P0 �0�0 0
P1 �1�0 �0�1 1
P2 �0�2 �1�1 �2�0 2
P3 �3�0 �2�1 �1�2 �0�3 3
P4 �4�0 �3�1 �2�2 �1�3 �4�0 0+4
P5 �5�0 �4�1 �3�2 �2�3 �1�4 �0�5 1+4
P6 �6�0 �5�1 �4�2 �3�3 �2�4 �1�5 �0�6 2+4
P7 �7�0 �6�1 �5�2 �4�3 �3�4 �2�5 �1�6 �0�7 3+4
P8 �7�1 �6�2 �5�3 �4�4 �3�5 �2�6 �1�7 0
P9 �7�2 �6�3 �5�4 �4�5 �3�6 �2�7 1
P10 �7�3 �6�4 �5�5 �4�6 �3�7 2
P11 �7�4 �6�5 �5�6 �4�7 3
P12 �7�5 �6�6 �5�7 0+4
P13 �7�6 �6�7 1+4
P14 �7�7 2+4

1 Channels 8 bits Multiplication Partial Products

Pi+j ���� | (� = 0 → 7, � = 0 → 7)
left

bitshift
P0 �0�0 0
P1 �1�0 �0�1 1
P2 �0�2 �1�1 �2�0 2
P3 �3�0 �2�1 �1�2 �0�3 3
P4 �4�0 �3�1 �2�2 �1�3 �4�0 4
P5 �5�0 �4�1 �3�2 �2�3 �1�4 �0�5 5
P6 �6�0 �5�1 �4�2 �3�3 �2�4 �1�5 �0�6 6
P7 �7�0 �6�1 �5�2 �4�3 �3�4 �2�5 �1�6 �0�7 7
P8 �7�1 �6�2 �5�3 �4�4 �3�5 �2�6 �1�7 0+8
P9 �7�2 �6�3 �5�4 �4�5 �3�6 �2�7 1+8
P10 �7�3 �6�4 �5�5 �4�6 �3�7 2+8
P11 �7�4 �6�5 �5�6 �4�7 3+8
P12 �7�5 �6�6 �5�7 4+8
P13 �7�6 �6�7 5+8
P14 �7�7 6+8

2-bit Mode Sub-Partial
Products Mask

�7 �6 �5 �4 �3 �2 �1 �0

�7 1 1 0 0 0 0 0 0

�6 1 1 0 0 0 0 0 0

�5 0 0 1 1 0 0 0 0

�4 0 0 1 1 0 0 0 0

�3 0 0 0 0 1 1 0 0

�2 0 0 0 0 1 1 0 0

�1 0 0 0 0 0 0 1 1

�0 0 0 0 0 0 0 1 1

4-bit Mode Sub-Partial
Products Mask

�7 �6 �5 �4 �3 �2 �1 �0

�7 1 1 1 1 0 0 0 0

�6 1 1 1 1 0 0 0 0

�5 1 1 1 1 0 0 0 0

�4 1 1 1 1 0 0 0 0

�3 0 0 0 0 1 1 1 1

�2 0 0 0 0 1 1 1 1

�1 0 0 0 0 1 1 1 1

�0 0 0 0 0 1 1 1 1

8-bit Mode Sub-Partial
Products Mask

�7 �6 �5 �4 �3 �2 �1 �0

�7 1 1 1 1 1 1 1 1

�6 1 1 1 1 1 1 1 1

�5 1 1 1 1 1 1 1 1

�4 1 1 1 1 1 1 1 1

�3 1 1 1 1 1 1 1 1

�2 1 1 1 1 1 1 1 1

�1 1 1 1 1 1 1 1 1

�0 1 1 1 1 1 1 1 1

Fig. 4: 1/2/4 Channels Unsigned 8/4/2 bits Bitshifter Multipli-
cation and Sub-Partial Products Masks

bitwise left shifting. Therefore, this multiplier only contains
adders, bitwise left shifting, and bitwise AND operators. To
design a multi-channel reconfigurable multiplier: As the instance
shown in Figure 4, assuming the input width of one Bitshifter
architecture-based multiplier is 8 bits, it needs to create a 15x8
register array to store sub partial products, (aibj). Red lines
divide this array into different channels by precision. From the
2/4/8-bit modes shown in Figure 4, we can find that if the applied
input precision is M when |i− j| ⩾ M or (i mod M) ̸= (j
mod M), sub-partial products aibj can be set as zero. The
blued aibj means it is available for the applying precision
and channel setting, which can be detected by a sub-partial
product mask on the right side. Besides, from the left bitshift
column in Figure 4, the left bit-shifting numbers for 2/4/8-bit
multiplication are constant values: For 2-bit multiplication, the
bitwise left shifting bits always repeat from 0 → 3; For 4-bit
multiplication, the bitwise left shifting bits need to add 4 based
on the shifting of 2-bit multiplication when [(i+j) mod 8] > 3;
For 8-bit multiplication, the bitwise left shifting bits add 8
based on the shifting of 4-bit multiplication when [(i + j)
mod 16] > 7. Therefore, we can first implement the hardware
for 2 bits multiplication and extend it to 4, 8, or higher precision
as shown in Figure 3. Besides, because the Bitshifter architecture
focuses on unsigned multiplication, the signed inputs must be
converted to an absolute value before the multiplication, and
the final output will be converted back to the signed value.
XNOR multipliers are implemented as one individual module
for binarized inputs.

IV. EVALUATION

To evaluate the two multiplier architectures approached in this
manuscript, we implemented their 8-, 16, and 32-bit instances,
three simple systolic arrays, and three single-layer neural net-
work accelerators on Ultra96-V2 FPGA platform. Table I listed
the hardware resource consumption of multiplier instances com-
pared with Vivado-IP and the designs of Neda et.al [5]. Table II
listed the resource consumption and computing latency of three
systolic arrays and Table III list the evaluation result of three

TABLE I: Resource Consumption Evaluation of
Multiplier-Tree and Bitshifter Architecture

Design Input Available Accurate/ Unsigned/ LUTsWidth Precision Approximate Signed

Vivado IP
32 bits 32

Accurate Unsigned
1012

16 bits 16 249
8 bits 8 60

mpDNN-Approx3 [5] 16 bits 4/8/16
Approximate Signed

324
8 bits 4/8 74

mpDNN-AO [5] 16 bits 4/8/16 261
8 bits 4/8 59

Multiplier-Tree
32 bits 1/2/4/8/16/32

Accurate
both

6601
16 bits 1/2/4/8/16 1670
8 bits 1/2/4/8 333

Bitshifter
32 bits 1/2/4/8/16/32

both
3446

16 bits 1/2/4/8/16 1002
8 bits 1/2/4/8 285

TABLE II: Systolic Array Evaluation on Ultra96-V2

Implementation Vivado IP Multiplier Tree Bitshifiter

Input Width 32 bits
Systolic Size 2× 2

PL Frequency 100 MHz 50 MHz 60 MHz
Predicted Power 2.164W 2.114W 2.109W

LUTs 122333 17.34% 33076 46.88% 21848 30.96%
FFs 8532 6.05% 6982 4.95% 6121 4.34%

LUTRAMs 692 2.40% 475 1.65% 363 1.36%
BRAMs 85 39.35% 71 32.87% 71 32.87%

Matrix 32 bits
52.97ms

105.93ms 88.29ms
Multiplication 8 bits 1.72ms 1.42ms

Latency 1 bit 15.27µs 12.14µs

TABLE III: Single-Layer Accelerator on Ultra96-V2
Design Precision LUT FF BRAM Frequency Latency

Vivado IP 8/8/8/8 24090 34.14% 22175 15.71% 135 62.50% 150 MHz 137.654µs
1/2/4/8 131.059µs

Bitshifter 1/2/4/8 42952 60.87% 22486 15.93% 138 63.89% 125 MHz 56.658µs
Multiplier Tree 37020 52.47% 22500 15.94% 100 MHz 69.274µs

single-layer accelerators. The input width of multipliers applied
in systolic arrays and single-layer accelerators are 32-bit and 8-
bit. As shown in Table I, all multi-precision multiplier designs in
Neda et.al [5] and our work consume more hardware resources
than regular design in Vivado IP. The two implementations
in Neda et.al [5] show less hardware overhead to achieve the
runtime reconfiguration of multi-precision than our designs.
However, their work executes the approximate multiplication
and supports less precision. Their multiplier designs also can
not support the switching between signed and unsigned modes
in runtime. For the two multiplier architectures proposed
in our work, Bitshifter architecture costs fewer resources
than Multiplier-Tree: For their 8/16/32-bit instance, Bitshifter
architecture consumes 85.6%, 60.0%, and 52.2% LUTs of
the Multiplier-Tree instances in same precision. Besides, the
multiplier designs based on Vivado IP, works of Neda et.al [5],
and Multiplier-Tree architecture cost about four times LUT
resources in doubling the input width. However, Bitshifter
architecture only consumes about 3.3 times the LUT resources
to double the input width. Furthermore, considering systolic
array is widely applied in FPGA-based accelerator designs and
explored in previous works like HiMap [12] and ChordMap [4],
we implement three 2× 2 systolic arrays as evaluation applying
32-bit Vivado-IP, Multiplier-Tree, and Bitshifter architectures
based multipliers. Table II listed the average latency after 1000
times matrix multiplication between two 256 × 256 matrices
based on three systolic arrays. The result shows that Bitshifter
architecture has the advantage in timing performance and re-
source consumption compared with Multiplier-Tree architecture:
it is always faster than Multiplier-Tree-based systolic array in
different precision because of it supports a higher frequency.
The Vivado-IP-based systolic array is faster than our two
architecture designs when the values in matrices are 32-bit
integers. However, when matrices are quantized to 1/8 bits,
the matrix computation based on our two architectures can
achieve about 60× and 7000× speedup in the same systolic

array instances because Vivado-IP-based systolic array doesn’t
support multi-precision reconfiguration in runtime. Moreover, to
evaluate the acceleration of our multiplier designs on network
inference, we trained two four-layer quantized MLP models
containing four 8-bit quantized layers and four 1/2/4/8-bit mixed-
precision quantized layers separately. The neuron numbers in the
four layers are 64/64/64/10. Because the inference accuracy on
the MNIST dataset [3] of regular quantized and mixed-precision
models is 97.74% and 95.96%, and the mixed-precision model
reduced the 83.1% of network weight storage, mixed-precision
quantization shows its advantage in the trade-off between
accuracy and resource consumption. However, Table III shows
that, unlike our multi-precision multiplier designs, the regular
multiplier, such as Vivado IP, can not speed up the inference of
mixed-precision models. Based on our two multiplier designs,
the accelerators reduced 56.8% and 47.1% latency in inference.

V. CONCLUSION

This manuscript presents two architectures, Multiplier Tree
and Bitshifter, for runtime reconfigurable multi-precision mul-
tiplier design supporting the runtime repartition of the input
channel according to the input precision and reconfiguration of
signed/unsigned computation mode. We separately implement
one 8-, 16-, and 32-bit instance for these two multiplier
architectures. All instances have been tested with 1 ∼ 32-bit
inputs. Moreover, we implemented three 2×2 systolic arrays and
three single-layer neural network accelerators based on Vivado
multiplier IP and our two multiplier architectures for evaluation.
Results show that our designs can achieve high flexibility with
multi-precision and multi-channel reconfiguration in runtime
and speed up the computation of low-precision inputs.

REFERENCES
[1] Chuliang Guo et al. “A Reconfigurable Approximate Multiplier for

Quantized CNN Applications”. In: 2020 25th Asia and South Pacific
Design Automation Conference (ASP-DAC). 2020, pp. 235–240.

[2] Norman P. Jouppi et al. “In-Datacenter Performance Analysis of a
Tensor Processing Unit”. In: 2017.

[3] Yann LeCun et al. “Gradient-based learning applied to document
recognition”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[4] Zhaoying Li et al. “ChordMap: Automated Mapping of Streaming
Applications Onto CGRA”. In: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 41.2 (2022), pp. 306–319.

[5] Negar Neda et al. “Multi-Precision Deep Neural Network Acceleration
on FPGAs”. In: 2022 27th Asia and South Pacific Design Automation
Conference (ASP-DAC). IEEE. 2022, pp. 454–459.

[6] Oliver A. Pfänder et al. “Configurable Blocks for Multi-precision
Multiplication”. In: 4th IEEE International Symposium on Electronic
Design, Test and Applications (delta 2008). 2008, pp. 478–481.

[7] SeyedRamin Rasoulinezhad et al. “PIR-DSP: An FPGA DSP Block
Architecture for Multi-precision Deep Neural Networks”. In: 2019 IEEE
27th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). 2019, pp. 35–44.

[8] Zhou Shun et al. “A VLSI architecture for a Run-time Multi-precision
Reconfigurable Booth Multiplier”. In: 2007 14th IEEE International
Conference on Electronics, Circuits and Systems. 2007, pp. 975–978.

[9] Mengshu Sun et al. “FILM-QNN: Efficient FPGA Acceleration of Deep
Neural Networks with Intra-Layer, Mixed-Precision Quantization”. In:
Proceedings of the 2022 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. FPGA ’22. Virtual Event, USA:
Association for Computing Machinery, 2022, 134–145.

[10] Yaman Umuroglu, Lahiru Rasnayake, and Magnus Själander. “Bismo: A
scalable bit-serial matrix multiplication overlay for reconfigurable com-
puting”. In: 2018 28th International Conference on Field Programmable
Logic and Applications (FPL). IEEE. 2018, pp. 307–3077.

[11] Yaman Umuroglu et al. “Finn: A framework for fast, scalable binarized
neural network inference”. In: Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. 2017,
pp. 65–74.

[12] Dhananiaya Wijerathne et al. “HiMap: Fast and Scalable High-Quality
Mapping on CGRA via Hierarchical Abstraction”. In: 2021 Design,
Automation Test in Europe Conference Exhibition (DATE). 2021,
pp. 1192–1197.

[13] Chen Wu et al. “MP-OPU: A Mixed Precision FPGA-based Overlay
Processor for Convolutional Neural Networks”. In: 2021 31st Inter-
national Conference on Field-Programmable Logic and Applications
(FPL). IEEE. 2021, pp. 33–37.

